Intermediate structure between chromatin fibers and chromosome revealed by mechanical stretching and SPM measurement.

نویسندگان

  • Kensuke Ikeda
  • Takeomi Mizutani
  • Osamu Hoshi
  • Tatsuo Ushiki
  • Hisashi Haga
  • Kazushige Kawabata
چکیده

The morphology of chromosomes (certain rod-shaped structures) is highly reproducible despite the high condensation of chromatin fibers (∼1 mm) into chromosomes (∼1 μm). However, the mechanism underlying the condensation of chromatin fibers into chromosomes is unclear. We assume that investigation of the internal structure of chromosomes will aid in elucidating the condensation process. In order to observe the detailed structure of a chromosome, we stretched a human chromosome by using a micromanipulator and observed its morphology along the stretched region by scanning probe microscopy (SPM). We found that the chromosome consisted of some fibers that were thicker than chromatin fibers. The found fiber was composed of approximately 90-nm-wide beads that were linked linearly. To explore the components of the fiber, we performed immunofluorescence staining of the stretched chromosome. Fluorescence signals of topoisomerase (Topo) IIα, which is known to interact with and support chromatin fibers, and DNA were detected both on the found fiber and beads. Furthermore, after micrococcal nuclease and trypsin treatments, the fibers were found to be mechanically supported by proteins. These results suggest that chromosome comprises an intermediate structure between chromatin fibers and chromosomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single chromatin fiber stretching reveals physically distinct populations of disassembly events.

Eukaryotic DNA is packaged into the cell nucleus as a nucleoprotein complex, chromatin. Despite this condensed state, access to the DNA sequence must occur during gene expression and other essential genetic events. Here we employ optical tweezers stretching of reconstituted chromatin fibers to investigate the release of DNA from its protein-bound structure. Analysis of fiber length increase per...

متن کامل

Study on the Interactions between Mechanical and Structural Properties of the Thermobonded Nonwovens

Thermobonding is widely used in producing of nonwovens. In this study various layers of thermobonded nonwovens were produced by altering the pressure, binder fibres and quality of blending. Mechanical properties of the so-called layers such as breaking strength and breaking elongation, bending rigidity and air permeability were assessed consequently. The structure of the layers was then studied...

متن کامل

Distinctive higher-order chromatin structure at mammalian centromeres.

The structure of the higher-order chromatin fiber has not been defined in detail. We have used a novel approach based on sucrose gradient centrifugation to compare the conformation of centromeric satellite DNA-containing higher-order chromatin fibers with bulk chromatin fibers obtained from the same mouse fibroblast cells. Our data show that chromatin fibers derived from the centromeric domain ...

متن کامل

The energy components of stacked chromatin layers explain the morphology, dimensions and mechanical properties of metaphase chromosomes.

The measurement of the dimensions of metaphase chromosomes in different animal and plant karyotypes prepared in different laboratories indicates that chromatids have a great variety of sizes which are dependent on the amount of DNA that they contain. However, all chromatids are elongated cylinders that have relatively similar shape proportions (length to diameter ratio approx. 13). To explain t...

متن کامل

DNA folding: structural and mechanical properties of the two-angle model for chromatin.

We present a theoretical analysis of the structural and mechanical properties of the 30-nm chromatin fiber. Our study is based on the two-angle model introduced by Woodcock et al. (Woodcock, C. L., S. A. Grigoryev, R. A. Horowitz, and N. Whitaker. 1993. Proc. Natl. Acad. Sci. USA. 90:9021-9025) that describes the chromatin fiber geometry in terms of the entry-exit angle of the nucleosomal DNA a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 400 1  شماره 

صفحات  -

تاریخ انتشار 2010